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1 More Experimental Details1

1.1 Implementation of 3DP & RSK2

3DP & RSK is achieved by integrating the visual encoders3

pre-trained in 3DP [Chen et al., 2025a] and RSK [Chen et4

al., 2025b] into a unified Floc framework. As shown in Fig.5

1 (a), the fully pre-trained encoders, Fθ in 3DP and Fϑ in6

RSK, are transferred to the visual FLoc framework for fine-7

tuning to fit the task, which localizes by finding the pose in the8

floorplan that has the most similar 2D rays (similar to LIDAR9

scans) as the prediction. Our visual FLoc framework is imple-10

mented as a dual-branch model consisting of a 3D geometric11

prior branch and a RSK branch. In each branch, the image12

is first aligned with the gravity direction, as done in [Chen13

et al., 2024]. Then, Fθ/Fϑ and an attention [Vaswani, 2017]14

based network are used to learn the probability distribution15

of planar depth over a range of depth hypotheses. Pixels that16

become unobservable due to gravity alignment are masked in17

the attention, as shown in Fig. 1 (b). To adaptively leverage18

3D geometric priors and RSK based on the current view, a19

selection network (as shown in Fig. 1 (c)) implemented as a20

multilayer perceptron is adopted to learn a weight 0 ≤ ω ≤ 121

from the two predictions for adaptive selection:22

PFusion = ωP3DP + (1− ω)PRSK . (1)

P3DP and PRSK denote the probability distributions of pla-23

nar depth from the 3D geometric prior branch and the RSK24

branch, respectively. The expectation of PFusion provides25

the final prediction of 2D rays. ω is manually specified as 126

and 0 implying that only 3D geometric priors and RSK are27

used, respectively. For the training of FLoc models, we opti-28

mize an L1 loss and a cosine similarity-based shape loss:29

LFLoc = ||d,d∗||1 +
d⊤d∗

max{||d||2||d∗||2, ϵ}
, (2)

where d and d∗ are predicted and GT 2D-ray depths, respec-30

tively. ϵ is a small constant to prevent division by zero.31

1.2 Variants of SemRayLoc32

Similar to the implementation of 3DP & RSK in Subsection33

1.1, SemRayLocr + 3DP is implemented by replacing the34

depth and semantic ray encoders in Fig. 2 with the fully pre-35

trained visual encoder Fθ from 3DP. Similarly, SemRayLocr36

∗Corresponding Author.

Table 1: Comparative studies of long-sequence trajectory tracking
methods on the Gibson(t) dataset.

Method (Venue)
Gibson(t) R@

0.2 m↑ 1 m↑ RMSE(S)↓ RMSE(A)↓
LASER(CVPR 2022) - 59.5 0.39 1.96
F3Loc(CVPR 2024) 35.1 89.2 0.18 0.88
F3Loc fusion(CVPR 2024) 62.2 94.6 0.12 0.51
3DP(ACM MM 2025) 70.3 97.3 0.12 0.34
RSK(AAAI 2026) 59.5 94.6 0.13 0.51
3DP & RSK 64.9 94.6 0.12 0.51
Ours (DisCo-FLoc) 73.0 94.6 0.11 0.49
Oracle - 100.0 0.07 0.07

+ RSK is implemented by replacing the depth and seman- 37

tic ray encoders in Fig. 2 with the fully pre-trained visual 38

encoder Fϑ from RSK. SemRayLocr + 3DP & RSK is im- 39

plemented by replacing the depth and semantic ray encoders 40

with Fθ and Fϑ, respectively. 41

2 Additional Evaluation for Long-Sequence 42

Trajectory Tracking 43

In this section, we compare our method with existing SOTA 44

methods on the long-sequence trajectory tracking task us- 45

ing the Gibson(t) dataset collected by F3Loc [Chen et al., 46

2024]. Gibson(t) consists of 118 pieces of long-sequence 47

views, each of which contains 280∼ 5152 image frames. The 48

Root-Mean-Square Error (RMSE) (over the last 10 frames) 49

is employed to measure the accuracy of sequential trajectory 50

tracking when localization is successful (RMSE(S)) and in 51

all cases (RMSE(A)). Technically, we combine the histogram 52

filter proposed by F3Loc with our method and perform visual 53

FLoc using 100 historical frames. 54

As shown in Tab. 1, our method improves the Recall met- 55

ric by 2.7% compared to 3DP at the localization accuracy of 56

0.2 m. The reduction in the RMSE(S) metric reflects the ro- 57

bustness of our method in sequential trajectory tracking. Ad- 58

ditionally, our method achieves competitive results in terms 59

of the localization accuracy of 1 m and RMSE(A). It is worth 60

noting that F3Loc fusion performs visual FLoc by adaptively 61

utilizing single-frame and multi-frame images, yet it is only 62

competitive on the RMSE(S) metric. Oracle achieved 100% 63

Recall at 1 m accuracy by combining GT rays with a his- 64
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Figure 1: Illustrations of 3DP & RSK. (a) The pre-trained visual encoders, Fθ in 3DP and Fϑ in RSK, are transferred to the visual FLoc
framework for fine-tuning to further fit this task. The visual FLoc framework is a dual-branch model consisting of a 3D geometric prior
branch and a RSK branch. (b) and (c) detail the masked attention mechanism and the selection network, respectively.

Figure 2. Overview of our pipeline. The input image is processed to generate depth rays, semantic rays, and optionally additional
metadata (e.g., room type prediction). We interpolate the ray predictions to a low-resolution representation and generate the depth
probability volume Pd and the semantic probability volume Ps (optionally masked according to the room type prediction). These
probability volumes are then fused to form the structural-semantic probability volume Pc for efficient coarse localization. Finally,
we refine the candidate poses using high-resolution ray predictions and predict the final 2D camera location and orientation, visu-
alized with an arrow on the right.

Figure 3. Overview of our semantic prediction network that
predicts a set of semantic rays through the Semantic Ray
Branch (top) and an optional room type value—e.g., Living
Room—through the Room Classification Branch (bottom).
The room type is used for extracting the mask Mroom, as vi-
sualized on the bottom right.

Semantic Rays Prediction. Unlike the continuous
depth values estimated in prior work, the semantic rays
should correspond to semantic categories, which are rep-
resented as a set of discrete classes. Therefore, we con-
struct a network that produces a semantic ray represen-
tation r̂s ∈ {1, . . . , C}l from the image, where each ray
is classified into one of C semantic categories. We pro-
vide an overview of our semantic ray prediction network
in Figure 3.

As illustrated in the figure, our semantic network ar-
chitecture leverages a pretrained ResNet50 backbone to
extract robust, high-level features from an input RGB
image I . After reducing the feature channels using a
CNN and projecting them into a lower-dimensional sub-
space, positional encodings are computed to preserve
spatial information. Two sets of learnable tokens are in-
troduced: a set of l ray tokens responsible for predicting
the semantic ray representation r̂s and a single (optional)
CLS token dedicated for representing global room clas-

sification information.
A single-head cross attention module integrates these

tokens with the flattened spatial features, yielding re-
fined tokens that capture both global context and local
details. In the ray branch, the refined ray tokens are first
processed by a self-attention block that enables each to-
ken to interact with all others, thereby aggregating com-
plementary contextual information. The enriched tokens
are then passed through an MLP to produce per-token
semantic logits, which after normalization form the final
semantic ray vector r̂s. If room labels are available in
the dataset, a similar network processes the CLS token
for room type prediction, as we further detail later.

Estimating Semantic Probability Volume. To obtain
the semantic probability map, Ps ∈ [0, 1][Ĥ,Ŵ ,O], we
first need to interpolate the l predicted semantic rays.
Regular linear interpolation—which prior work used for
depth estimation—is unsuitable in the context of dis-
crete labeling since interpolating between class labels
can produce non-valid or semantically meaningless re-
sults. Instead, we propose a voting-based interpolation
scheme: We reduce the original equiangular rays to the
desired count by applying a majority vote within a small
neighborhood. We use a window of three rays, assign-
ing the label that appears most frequently in that window
to the center target ray; see the supplementary material
for the full algorithm. Next, we compute the score for
each set of rays by taking the L1 difference between the
predicted semantic labels and the reference labels. The
score is then exponentiated and normalized to form the
semantic probability volume Ps, which quantifies the
likelihood of each candidate pose based on the align-
ment between the semantic rays and the candidate pose.

Figure 2: The pipeline of SemRayLoc from the paper [Grader and Averbuch-Elor, 2025].

togram filter, demonstrating the potential of visual FLoc.65

3 More Visualizations66

Fig. 3 and Fig. 4 illustrate the qualitative comparisons be-67

tween our method and SemRayLoc [Grader and Averbuch-68

Elor, 2025]. Influenced by the repetitive geometric struc-69

tures in the floorplan, our RRP also fails when SemRayLoc70

encounters errors. However, our visual-geometric contrasts71

effectively address localization ambiguities and yield high-72

precision final FLocs.73
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Figure 3: Qualitative comparison on 9 scenes (Part 1/2).
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Figure 4: Qualitative comparison on 9 scenes (Part 2/2, Continued).
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